C-H Bond Activation by a Rare Cationic Iridium Dinitrogen Complex. An Important Electronic Effect in the Chemistry of the Hydridotris(pyrazolyl)borate Ligand

David M. Tellers and Robert G. Bergman*

Department of Chemistry, University of California and Division of Chemical Sciences Lawrence Berkeley National Laboratory Berkeley, California 94720

Received September 15, 1999

The controlled, efficient functionalization of saturated hydrocarbons remains an elusive goal.¹ We and others have focused on developing homogeneous transition metal complexes capable of dehydrogenating alkanes.² Toward that end, we reported earlier two Ir(III) compounds, Cp*(PMe₃)Ir(Me)OTf (1; Cp* = C₅Me₅, OTf = OSO₂CF₃) and [Cp*(PMe₃)Ir(Me)(ClCH₂Cl)][BAr_f] (2; BAr_f = B[3,5-C₆H₃(CF₃)₂]₄), that are capable of cleaving carbon– hydrogen bonds in a wide variety of hydrocarbons under extremely mild conditions.^{3,4}

The fact that complex 2 reacts much more rapidly than 1, combined with substantial supporting evidence,⁵ has convinced us that cationic 16-electron iridium complexes are the reactive species in these transformations, and the rate of C-H activation can be increased by increasing the rate of dissociation of the labile ligand (i.e., triflate in 1, CH_2Cl_2 in 2). The hydridotris(3,5dimethylpyrazolyl)borate (TpMe2) ligand occupies substantially increased space in the coordination spheres of metals, but otherwise is thought to function as a close analogue of Cp*.⁶ We therefore decided to prepare and investigate the C-H activating properties of the Tp^{Me_2} analogues of 1 and 2, in hopes of generating a robust ligand set that would, however, promote rapid formation of the corresponding 16-electron Ir cations. Unexpectedly, we have uncovered a strong role that the *electronic* properties of Tp^{Me₂} play in determining reactivity at the Ir center. The properties of this ligand have also led us to the synthesis, characterization, and reactivity toward C-H bonds of [Tp^{Me2-} $(PMe_3)Ir(Me)N_2][BAr_f]$ (3-N₂), the first structurally characterized monomeric iridium dinitrogen complex.

Routes analogous to those used in the synthesis of compounds 1 and 2 were not successful with the Tp^{Me_2} ligand but treatment of $Tp^{Me_2}(PMe_3)IrH_2$ (4)⁷ with 2 equiv of NBS in CCl₄ results in the clean formation of $Tp^{Me_2}(PMe_3)IrBr_2$ (5) (53% yield). This compound can be selectively alkylated with methyllithium to generate $Tp^{Me_2}(PMe_3)Ir(Me)Br$ (6) (62% yield). Treatment of 6 with AgOTf provides access to our first target molecule, $Tp^{Me_2}(PMe_3)Ir(Me)OTf$ (7) (47% yield). The structure of 7 was determined by X-ray crystallography (Figure 1). The Ir–O bond length of 2.128(5) Å in 7 is relatively short compared to that in Cp*(PMe_3)Ir(Me)OTf (1) (2.216(10) Å).

(3) Burger, P.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 10462-10463.

 531. (b) Trofimenko, S. Scorpionates—The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press: London, 1999.
 (7) Oldham, W. J.; Heinekey, D. M. Organometallics 1997, 16, 467–474.

Figure 1. ORTEP diagrams of complexes 7 and 3-N2.

This short Ir–O bond length presaged our finding that triflate **7** is unreactive toward a variety of hydrocarbons, including benzene and methane. This stands in contrast to the behavior of the Cp* analogue **1** which rapidly cleaves the C–H bonds of all these substrates.³ Additionally, complex **7** is inert toward Lewis bases as well. Displacement of the triflate ligand by CO, PMe₃, or CH₃CN, which is rapid for **1**, is not observed, even at elevated temperatures and pressures.

The inescapable conclusion of these results is that triflate dissociation from **1** is slower rather than faster than it is in the corresponding Cp* complexes. The lack of reactivity of **7** is likely not due to a steric effect, as dissociation of the triflate ligand from **7** should be facilitated by the relatively bulky Tp^{Me_2} ligand.⁸ We therefore hypothesized that this unexpected lack of reactivity is actually the result of an electronic effect imposed by the Tp^{Me_2} ligand. In a search for precedent for this behavior, a survey of the Tp and Tp^{Me_2} literature revealed different and sometimes conflicting reports on the relative electron-donating properties of the Cp and Cp* vs Tp and Tp^{Me_2} ligand is clearly claimed to be a stronger electron donor than Cp or Cp*. This discrepancy encouraged us to focus more specifically on the electronic differences between Tp^{Me_2} and Cp* bound to iridium.

Graham and co-workers reported the IR stretching absorbances of $Tp^{Me_2}Ir(CO)_2^{10}$ to be 2039 and 1960 cm⁻¹, and those for Cp*Ir-(CO)_2¹¹ to be 2020 and 1953 cm⁻¹ in hexane. The red-shifted CO stretches of the Cp* compound with respect to those of the Tp^{Me_2} are clearly indicative of a *less* electron rich metal center in the Tp^{Me_2} case.¹² Further confirmation of this effect was obtained by examining the proton-transfer equilibration between Tp^{Me_2} -(PMe_3)Ir(H)₂H⁺OTf⁻ (**8**)¹² and Cp*(PMe_3)Ir(H)₂ (**9**).¹³ Treatment of a CD₂Cl₂ solution of **9** with a CD₂Cl₂ solution of **8** results in the quantitative formation of Cp*(PMe_3)Ir(H)_3⁺OTf⁻ (**10**) and $Tp^{Me_2}(PMe_3)Ir(H)_2$ (**4**), as determined by ¹H and ³¹P{¹H} NMR spectroscopy. Thus the equilibrium lies heavily in favor of the protonated (apparently more strongly basic) Cp* complex. Finally,

(13) Heinekey, D. M.; Hinkle, A. S.; Close, J. D. J. Am. Chem. Soc 1996, 118, 5353-5361.

^{(1) (}a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. Engl. **1998**, *37*, 2180–2192 and references therein. (b) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. **1995**, *28*, 154–162.

 ⁽²⁾ For examples, see: (a) Fuchen, L.; Pak, E. B.; Singh, B.; Jensen, C.
 (a) For examples, see: (a) Fuchen, *Soc.* 1999, *121*, 4086–4087. (b) Gupta,
 (b) Gupta, M.; Hagen, C.; Kaska, W. C.; Cramer, R. E.; Jensen, C. M. *J. Am. Chem. Soc.* 1997, *119*, 840–841. (c) Aoki, T.; Crabtree, R. H. *Organometallics* 1993, *12*, 294–298.

⁽⁴⁾ Arndtsen, B. A.; Bergman, R. G. Science 1995, 270, 1970–1973.
(5) Adamson, D. R.; Arndtsen, B. A.; Bergman, R. G. Manuscript in preparation.

^{(6) (}a) Kitajima, N.; Tolman, B. W. Prog. Inorg. Chem. **1995**, 43, 419– 531 (b) Trofimenko S. Scorpionates—The Coordination Chemistry of

⁽⁸⁾ While triflate displacement from 1 occurs in a dissociative manner (see ref 5), we cannot yet rule out the possibility that the analogous reaction in 7 occurs by an associative rather than a dissociative process, see: McNeil, W. S.; Dumez, D. D.; Matano, Y.; Lovell, S.; Mayer, J. M. *Organometallics* **1999**, *18*, 3715–3727.

⁽⁹⁾ Other authors have recently noted a similar discrepancy: (a) Gunnoe, T. B.; Sabat, M.; Harman, W. D. J. Am. Chem. Soc. **1998**, *120*, 8747–8754.

 ⁽b) Koch, J. L.; Shapley, P. A. Organometallics **1997**, *16*, 4071–4076.
 (10) Ball, R. G.; Ghosh, C. K.; Hoyano, J. K.; McMaster, A. D.; Graham, W. G. J. Chem. Soc., Chem Commun. **1989**, 341–342.

⁽¹¹⁾ Hoyano, J. K.; Graham, W. G. J. Am. Chem. Soc. **1982**, 104, 3723– 3724.

⁽¹²⁾ Additional infrared data in support of this argument for iridium can be found in the following: (a) Oldham, W. J.; Hinkle, A. S.; Heinekey, D. M. J. Am. Chem. Soc. **1997**, *119*, 11028–11036. (b) Gutierrez-Puebla, E.; Monge, A.; Nicasio, M. C.; Perez, P. J.; Poveda, M. L.; Rey, L.; Ruiz, C.; Carmona, E. Inorg. Chem. **1998**, *37*, 4538–4546.

Scheme 1

the relative Ir–O bond lengths in 7 and the Cp* analogue 1 are consistent with 7 being the more electrophilic metal center (vide supra). The above results are consistent with a stronger cation (iridium)/anion (triflate) interaction, correlating with a lower rate of triflate dissociation.14,15

We next attempted to address the question of whether the Tp^{Me₂} system could be induced to undergo C-H activation if some way could be found to generate the iridium(III) cation. In the Cp* case, metathesis of the triflate ligand for the noncoordinating anion BAr_f gave 2, which increased the reactivity of the metal complex substantially.⁴ We therefore decided to apply this technique to the Tp^{Me₂} case, and treated 7 with NaBAr_f. Instead of the CH₂Cl₂ complex, the new cationic dinitrogen complex [Tp^{Me2}(PMe3)Ir- $(Me)N_2[BAr_f]$ (3-N₂) was formed (Scheme 1, 74% yield). Compound 3-N₂ exhibits a strong infrared absorption at 2225 cm^{-1} (CH₂Cl₂) assigned to the N=N stretch. Substitution of ${}^{14}N_2$ for ¹⁵N₂ produces the expected isotopic shift in the infrared spectrum to 2151 cm⁻¹. This infrared behavior compares well with that of Tp^{Me₂}Ir(Ph)₂N₂ (2190 cm⁻¹, Nujol) reported by Carmona and coworkers.16 Complex 3-N2 was also characterized by single-crystal X-ray crystallography (Figure 1). Despite iridium being one of the first metals found to coordinate N_2 ,¹⁷ to our knowledge, 3-N₂ is the first reported structurally characterized monomeric iridium dinitrogen complex.18,19

Exclusion of gaseous dinitrogen is required to generate the (thermally very sensitive) CH2Cl2 complex. Treatment of a methylene chloride solution of triflate 7 with NaBAr_f in the absence of N₂ results in the quantitative formation of [Tp^{Me₂}-(PMe₃)Ir(Me)CH₂Cl₂][BAr_f] (3-CH₂Cl₂) (Scheme 1). Confirmation of this assignment was obtained by low-temperature ¹³C NMR spectrosocopy where at -80 °C in CH₂Cl₂ a triplet at 62.4 ppm

 $({}^{1}J_{C-H} = 186 \text{ Hz})$ assigned to the carbon atom on the methylene chloride molecule bound to the cationic iridium center is observed. When 3-CH₂Cl₂ is placed under N₂ (1 atm), displacement of CH₂- Cl_2 occurs instantaneously to generate 3- N_2 .

The affinity for N₂ over CH₂Cl₂ exhibited by the cationic Ir center in 3 is in direct contrast to that of the Cp* analogue 2, where binding to N₂ is observed only at elevated N₂ pressures.²⁰ It has recently been noted that CH_2Cl_2 is a better σ donor and a poorer π acceptor than N₂.²¹ It is therefore surprising that the more electron-rich Cp* compound, 2, prefers to bind the poorer π acceptor, while the more electron-poor compound, 3, preferentially coordinates the poorer σ donor N₂. We suggest that in this case, the Tp^{Me_2} steric bulk has come into play-the larger CH₂Cl₂ molecule has more difficulty fitting into the Tp^{Me₂} than the Cp* coordination sphere, an effect that is much reduced with the smaller N₂ molecule.

Both the dinitrogen and CH_2Cl_2 ligands in 3 are good enough leaving groups with respect to triflate that they are now readily displaced by dative ligands. For example, treatment of 3-CH₂Cl₂ or 3-N₂ with excess CO or CH₃CN results in rapid displacement of the dinitrogen ligand to yield [TpMe2(PMe3)Ir(Me)CO][BArf] (11) $(77\% \text{ yield})^{22}$ and $[Tp^{Me_2}(PMe_3)Ir(Me)CH_3CN][BAr_f]$ (12) (83% yield), respectively (Scheme 1). The complexes are also reactive toward aromatic and aldehydic C-H bonds (Scheme 1). Benzene reacts with 3-N₂ at room temperature to yield methane and the phenyl iridium complex $[Tp^{Me_2}(PMe_3)Ir(Ph)N_2][BAr_f]$ (13) $(t_{1/2} = 20 \text{ h}, 80\% \text{ NMR yld}, v_{NN} = 2236 \text{ cm}^{-1})$. Preliminary NMR spectroscopic observations with the dichloromethane complex 3-CH₂Cl₂ show that it also undergoes C-H activation with benzene ($t_{1/2}$ = ca. 15 min at 25 °C). Treatment of **3-N**₂ with acetaldehyde or *p*-tolualdehyde results in formation of the "Obound" aldehyde complexes 14 and 15. Significantly, even though the aldehydes are now bound directly to iridium, the aldehyde C-H bonds in complexes 14 and 15 are completely unreactive at room temperature. This once again stands in contrast to the behavior of the Cp* system, which induces aldehyde C-H activation instantaneously at -60 °C. However, C-H activation does occur at elevated temperature: thermolysis of 14 and 15 at 75 and 105 °C, respectively, results in liberation of methane and formation of 11 and 16 (Scheme 1).23 We conclude that both ligand dissociation and C-H activation face higher barriers as a result of the poorer electron-donating ability of $Tp^{Me_2}\xspace$ toward iridium.

Acknowledgment. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. We thank Dr. Fred Hollander and Dr. Dana Caulder of the UC Berkeley CHEXRAY facility for carrying out the X-ray diffraction studies. We are also grateful to Professor D. M. Heinekey and Professor Ernesto Carmona for helpful discussions.

Supporting Information Available: Spectroscopic and analytical data for 3, 5–7, and 11–16; X-ray diffraction data for $3-N_2$ and 7 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA993347E

⁽¹⁴⁾ Further experimental details in support of this argument will be reported in a full paper.

⁽¹⁵⁾ In contrast to the Cp ligand, the Tp ligand tends to enforce an octahedral geometry. See: Curtis, M. D.; Shiu, K. B.; Butler, W. M.; Huffman, J. C. J. Am. Chem. Soc. 1986, 108, 3335-3343. It can be argued that the inertness of 7 is a result of the strict octahedral environment around the Ir-(III), d⁶ center. We are grateful to Prof. Ernesto Carmona for calling our attention to this fact.

⁽¹⁶⁾ Gutierrez, E.; Monge, A.; Nicasio, M. C.; Perez, P. J.; Poveda, M. L.; Carmona, E. Chem. Eur. J. 1998, 4, 2225–2236.

⁽¹⁷⁾ Collman, J. P.; Kubota, M.; Vastine, F. D.; Sun, J. Y.; Kang, J. W. J. Am. Chem. Soc. **1968**, *90*, 5430–5437.

⁽¹⁸⁾ See ref 16 and: Lee, D. W.; Kaska, W. C.; Jensen, C. M. Organometallics 1998, 17, 1-3.

⁽¹⁹⁾ Unfortunately, disorder in the Me and N₂ ligand positions prevented the determination of exact bond lengths or angles.

⁽²⁰⁾ Under 50 atm of N_2 , in CH₂Cl₂ solution, [Cp*(PMe₃)Ir(Me)N₂]⁺ is observed. Tellers, D. M.; Yeston, J. S.; Golden, J. T.; Bergman, R. G. Manuscript in preparation.

⁽²¹⁾ Toupadakis, A.; Kubas, G. J.; King, W. A.; Scott, B. L.; Huhmann-Vincent, J. *Organometallics* **1998**, *17*, 5315–5323. (22) [Cp*(PMe₃)IrCO(Me)][BAr_f]: $v_{CO}(KBr) = 2034$ cm⁻¹. Compound **11**: $v_{CO}(KBr) = 2006$ cm⁻¹.

⁽²³⁾ For aldehyde activation by a Tp^{Me_2} Ir complex see: Gutierrez-Puebla, E.; Monge, A.; Paneque, M.; Poveda, M. L.; Salazar, V.; Carmona, E. J. Am. Chem. Soc. **1999**, 121, 248–249.